Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning

> Qimai Li, Zhichao Han, Xiao-Ming Wu Department of Computing The Hong Kong Polytechnic University

Supervised Learning

Semi-Supervised Learning (SSL)

How unlabeled data helps?

How to Leverage Unlabeled Data

Node -> Document Edge -> Citation Link

Image via https://www.cwts.nl/media/images/content/b515d3b727bc41fe7e858df0ffd062bf_large.png

Graph Convolutional Networks

(Kipf & Welling, ICLR, 2017)

Layer-wise propagation rule:

$$H^{(l+1)} = \sigma(AH^{(l)}\Theta^{(l)})$$
Convolution layer:
preprocessed
adjacency matrix

р

Projection layer: fully connected networks

GCNs for semi-supervised classification:

 $Z = \operatorname{softmax}(A\sigma(AX\Theta^{(0)})\Theta^{(1)})$

$$\mathcal{L} := -\sum_{i \in \mathcal{V}_l} \sum_{f=1}^F Y_{if} \ln Z_{if}$$

Why GCNs Work

$$H^{(1)} = \sigma(AX\Theta^{(0)})$$
Convolution layer:
preprocessed
adjacency matrix
$$H^{(1)} = \sigma(AX\Theta^{(0)})$$
Provide the second se

Projection layer: fully connected networks

Table 1: GCNs vs. Fully-connected networks

(0))

One-layer	Two-layer	One-layer	Two-layer
FCN	FCN	GCN	GCN
0.530860	0.559260	0.707940	0.798361

$$H^{(l+1)} = \sigma(AH^{(l)}\Theta^{(l)})$$

Smoothing

Limitations of GCNs (1)

$$H^{(l+1)} = \sigma(AH^{(l)}\Theta^{(l)}) \longrightarrow \text{Localized filter}$$

- Labeled instance
- O Unlabeled instance
- Instance adjacent to a labeled instance

Need to stack many layers to explore global graph topology when labeled data is few - overfitting

Limitations of GCNs (2)

Need additional labeled data for model selection

Our Solutions (1)

- Co-train a GCN with a random walk model
 - Use random walks to explore global topology
 - Extend the labeled set with high-confidence predictions by the random walk model
- Labeled instance
 Unlabeled instance
 Pseudo labeled instance

Our Solutions (2)

• Self-training

 Extend the labeled set with high-confidence predictions by a pre-trained GCN

- Union of Self-training and Co-training
 Add to the diversity of pseudo labels
- Intersection of Self-training and Co-training

 Get more accurate pseudo labels

Experimental Results

Significant improvements on 3 citation networks

Cora						
Label Rate	0.5%	1%	2%	3%	4%	5%
LP	<u>56.4</u>	62.3	65.4	67.5	69.0	70.2
Cheby	38.0	52.0	62.4	70.8	74.1	77.6
GCN-V	42.6	56.9	67.8	74.9	77.6	79.3
GCN+V	50.9	62.3	72.2	76.5	78.4	79.7
Co-training	<u>56.6</u>	<u>66.4</u>	73.5	75.9	78.9	<u>80.8</u>
Self-training	53.7	<u>66.1</u>	<u>73.8</u>	<u>77.2</u>	<u>79.4</u>	80.0
Union	<u>58.5</u>	<u>69.9</u>	<u>75.9</u>	<u>78.5</u>	<u>80.4</u>	<u>81.7</u>
Intersection	49.7	65.0	72.9	77.1	<u>79.4</u>	80.2

CiteSeer						
Label Rate	0.5%	1%	2%	3%	4%	5%
LP	34.8	40.2	43.6	45.3	46.4	47.3
Cheby	31.7	42.8	59.9	66.2	68.3	69.3
GCN-V	33.4	46.5	62.6	66.9	68.4	69.5
GCN+V	<u>43.6</u>	55.3	64.9	<u>67.5</u>	<u>68.7</u>	<u>69.6</u>
Co-training	<u>47.3</u>	55.7	62.1	62.5	64.5	65.5
Self-training	43.3	<u>58.1</u>	<u>68.2</u>	<u>69.8</u>	<u>70.4</u>	<u>71.0</u>
Union	<u>46.3</u>	<u>59.1</u>	<u>66.7</u>	66.7	67.6	68.2
Intersection	42.9	<u>59.1</u>	<u>68.6</u>	<u>70.1</u>	<u>70.8</u>	<u>71.2</u>

PubMed					
Label Rate	0.03%	0.05%	0.1%	0.3%	
LP	<u>61.4</u>	<u>66.4</u>	65.4	66.8	
Cheby	40.4	47.3	51.2	72.8	
GCN-V	46.4	49.7	56.3	76.6	
GCN+V	<u>60.5</u>	57.5	65.9	<u>77.8</u>	
Co-training	<u>62.2</u>	<u>68.3</u>	72.7	<u>78.2</u>	
Self-training	51.9	58.7	66.8	77.0	
Union	58.4	<u>64.0</u>	<u>70.7</u>	<u>79.2</u>	
Intersection	52.0	59.3	<u>69.4</u>	77.6	

Summary

- Contributions
 - Principled understanding of the working mechanisms and limitations of GCNs for SSL
 - Solutions to improve GCNs

- Future directions
 - Designing more powerful convolution filters
 - Techniques for training GCNs